

Algorithm Configuration and friends

MIE1666: Machine Learning for Mathematical Optimization

Largely based on Hoos, Holger H. "Automated algorithm configuration and parameter tuning." Autonomous search. Springer, Berlin, Heidelberg, 2011. 37-71.

Some examples from Chapter 13 of Integer Programming by Wolsey

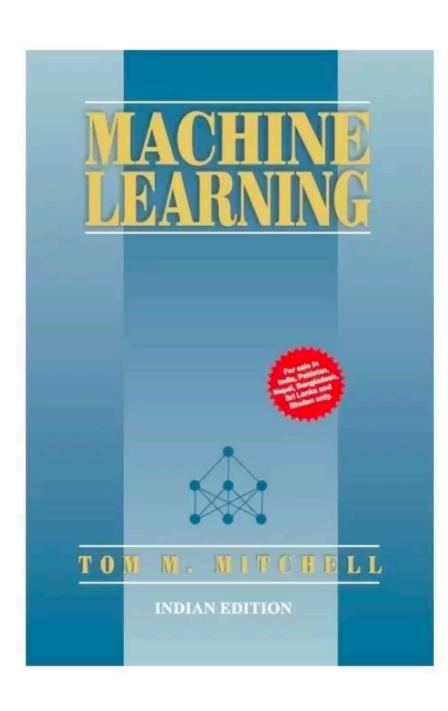
Machine Learning:

Study of algorithms that

- improve their <u>performance</u> P
- at some task T
- with <u>experience</u> E

well-defined learning task: <P,T,E>

Tom Mitchell, CMU 10-601 slides



Why should this work at all?

The main theoretical basis of supervised learning:

With a sufficient amount of "similar" data

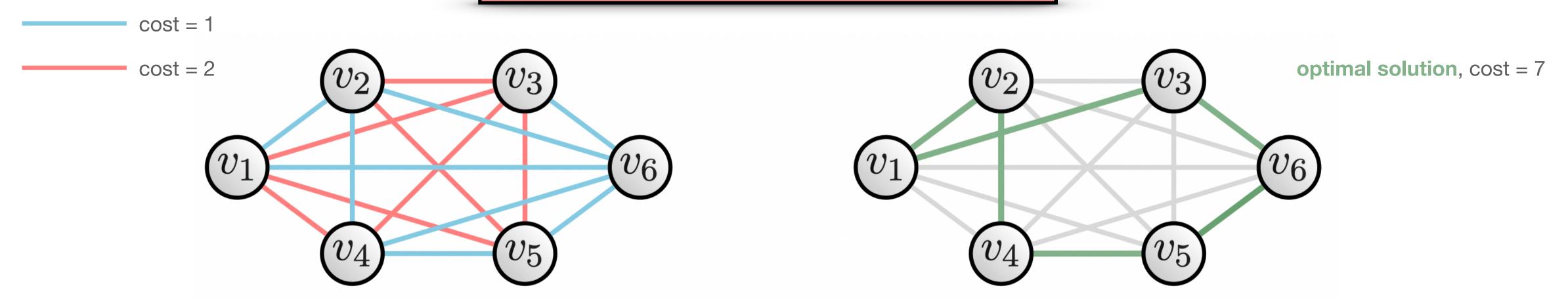
+

an expressive model class:

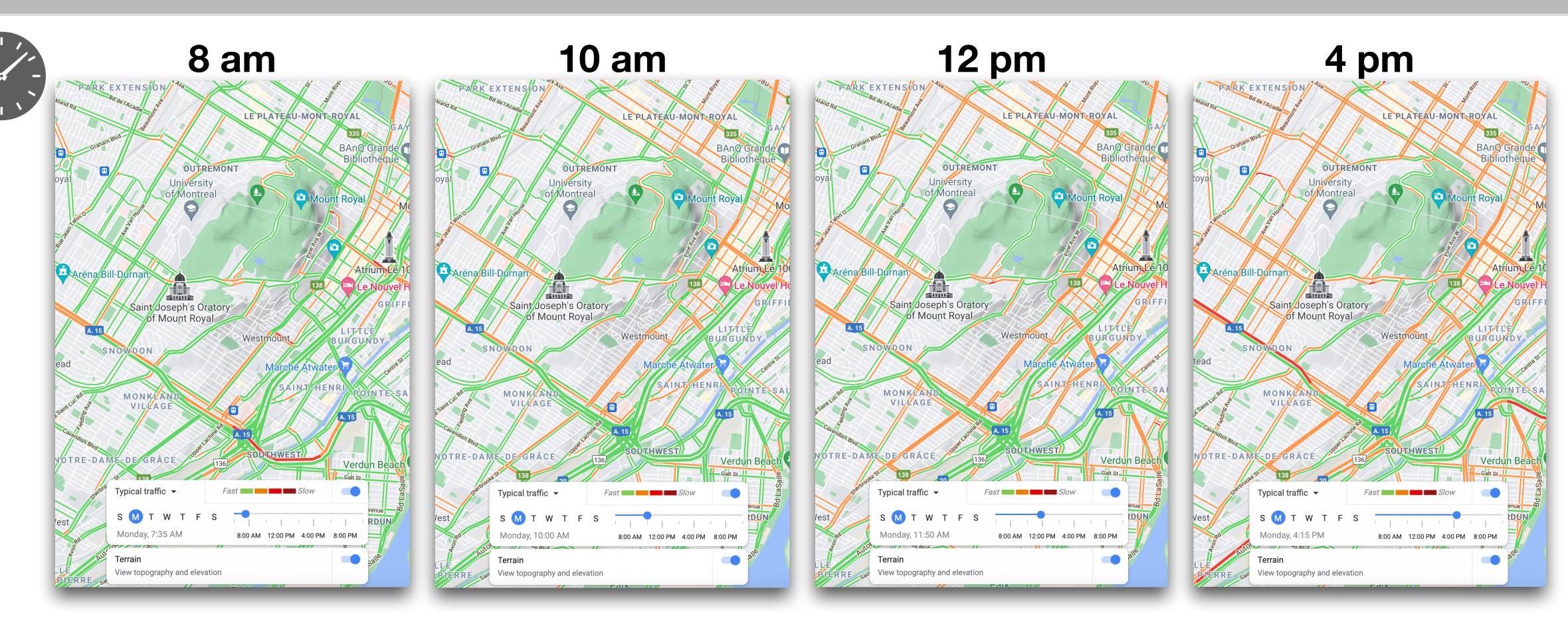
Minimizing the loss function on the training data yields a highly accurate model on unseen test data, with high probability

- 1. Data: $S = \{(x_i, y_i)\}_{i=1,...,n}$
 - x_i: data example with d attributes
 - y_i: label of example (what you care about)
- 2. Classification model: a function $f_{(a,b,c,...)}$
 - Maps from X to Y
 - (a,b,c,...) are the parameters
- 3. Loss function: L(y, f(x))
 - Penalizes the model's mistakes

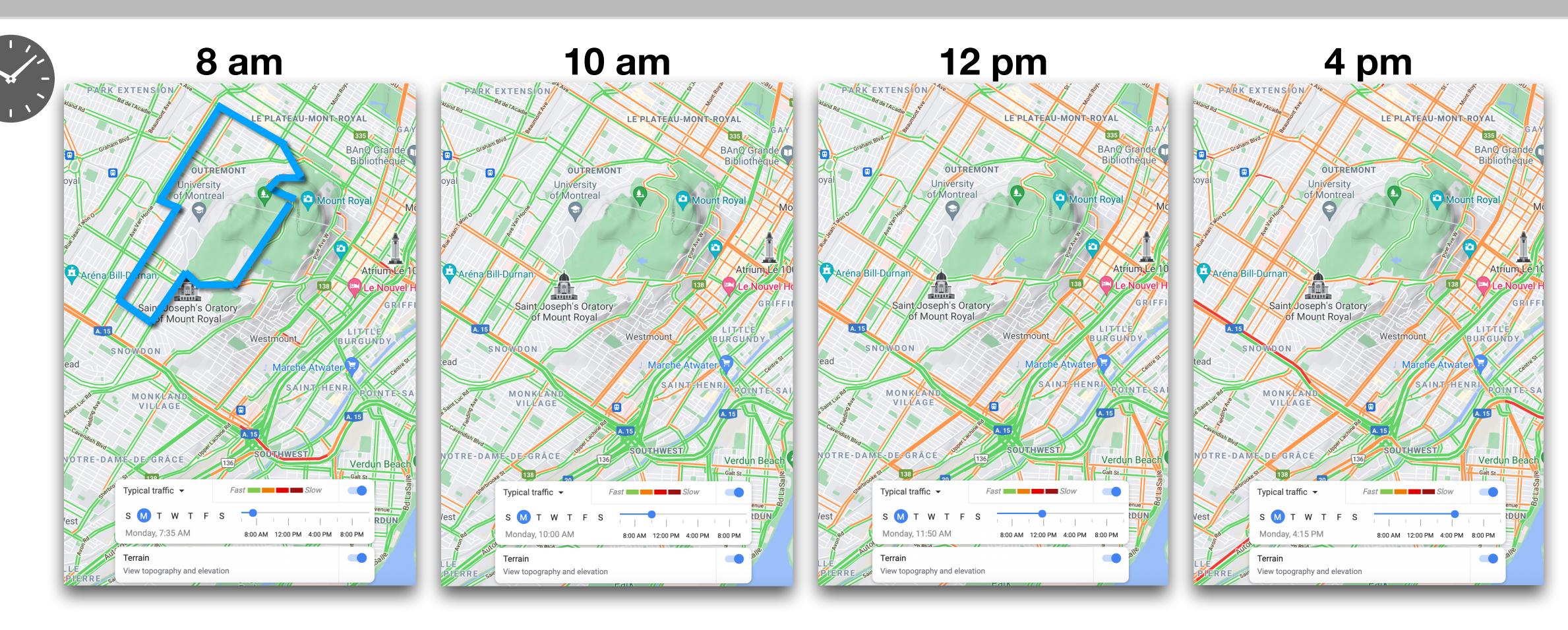
Graph Optimization



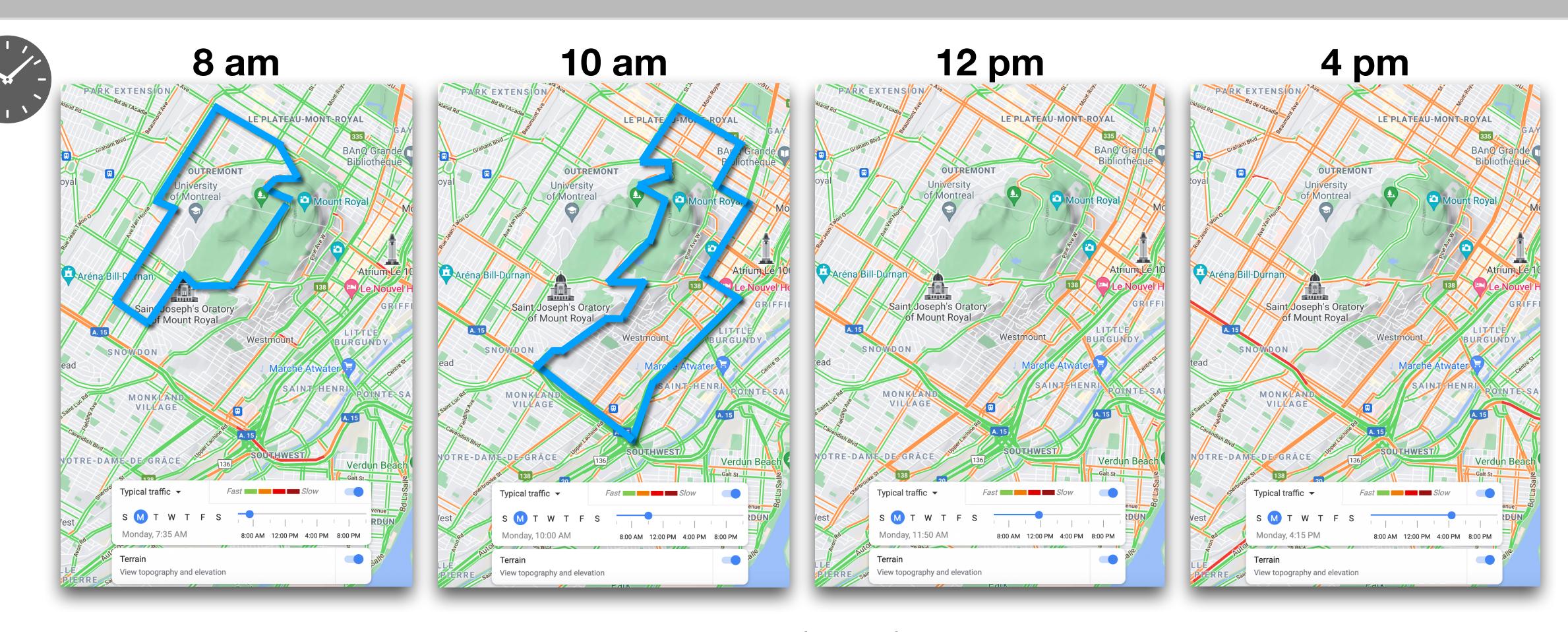
Travelling Salesperson Problem (TSP)



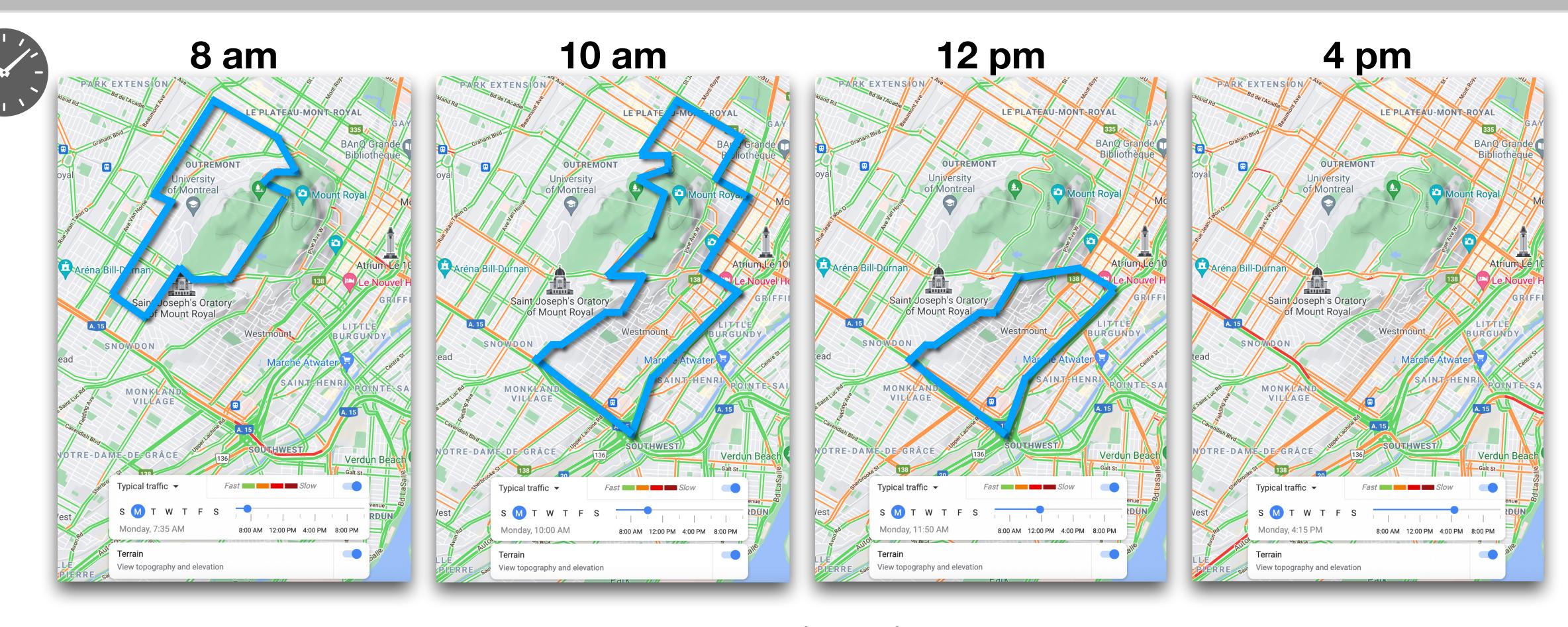
Google Maps, Montréal, Quebéc, Canada



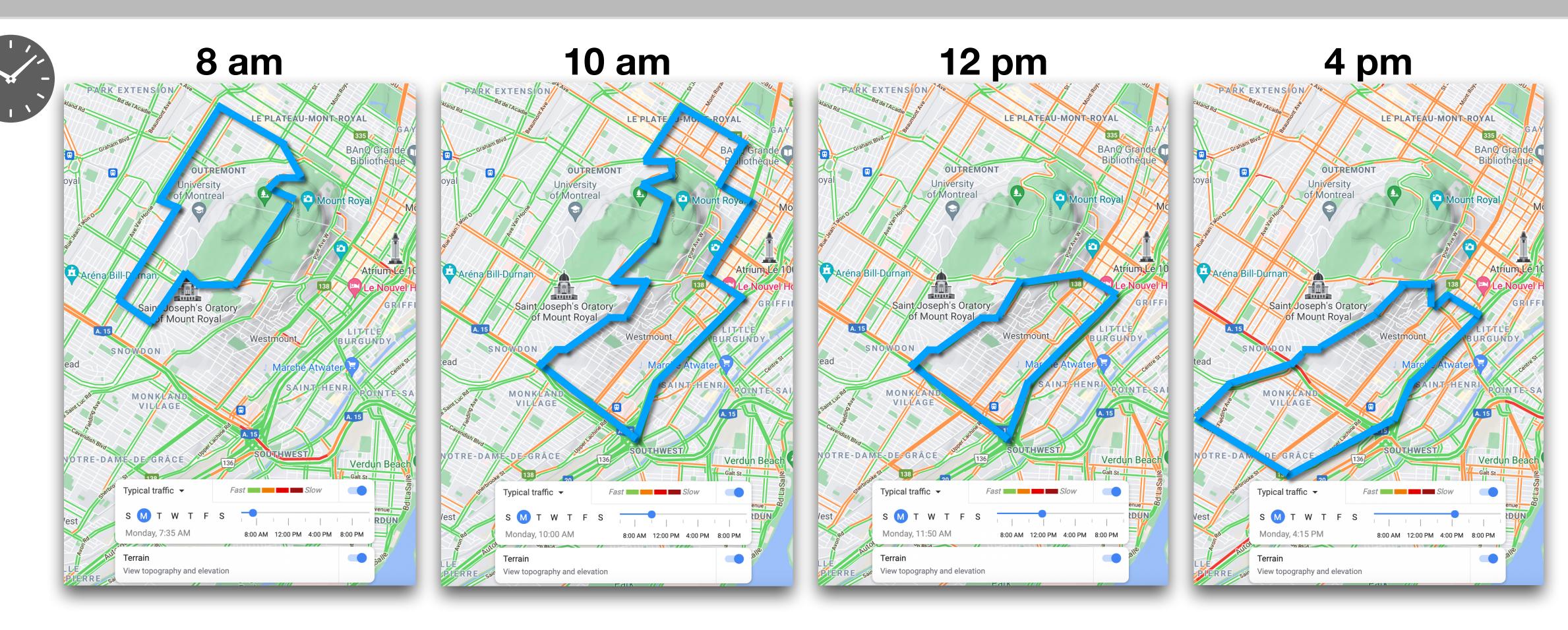
Google Maps, Montréal, Quebéc, Canada



Google Maps, Montréal, Quebéc, Canada



Google Maps, Montréal, Quebéc, Canada



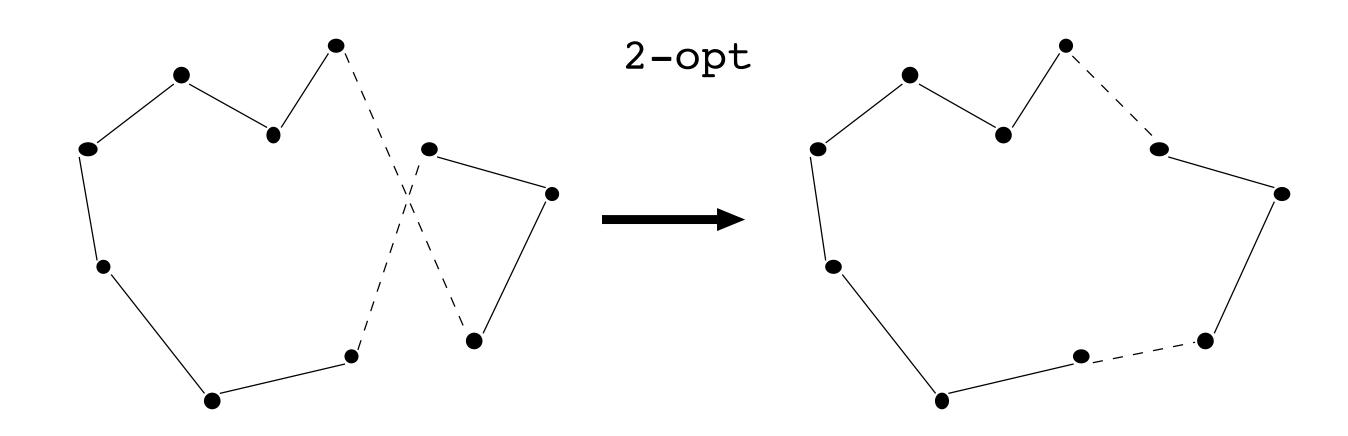
Google Maps, Montréal, Quebéc, Canada

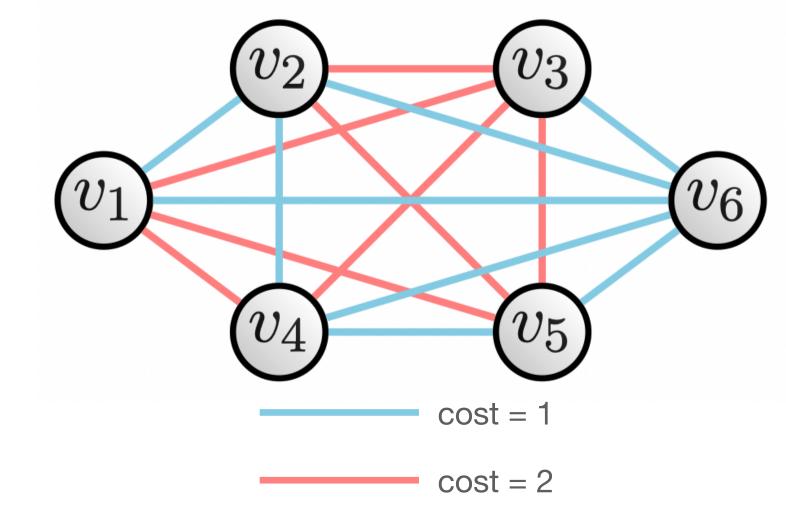
Nearest Neighbour heuristic for the TSP:

- always choose at the current city the closest unvisited city
 - choose an arbitrary initial city $\pi(1)$
 - at the ith step choose city $\pi(i+1)$ to be the city j that minimises $\{d(\pi(i),j)\}; j \neq \pi(k), 1 \leq k \leq i$

Iterative Improvement for the TSP

- initial solution is a complete tour
- k-opt neighbourhood: solutions which differ by at most k edges



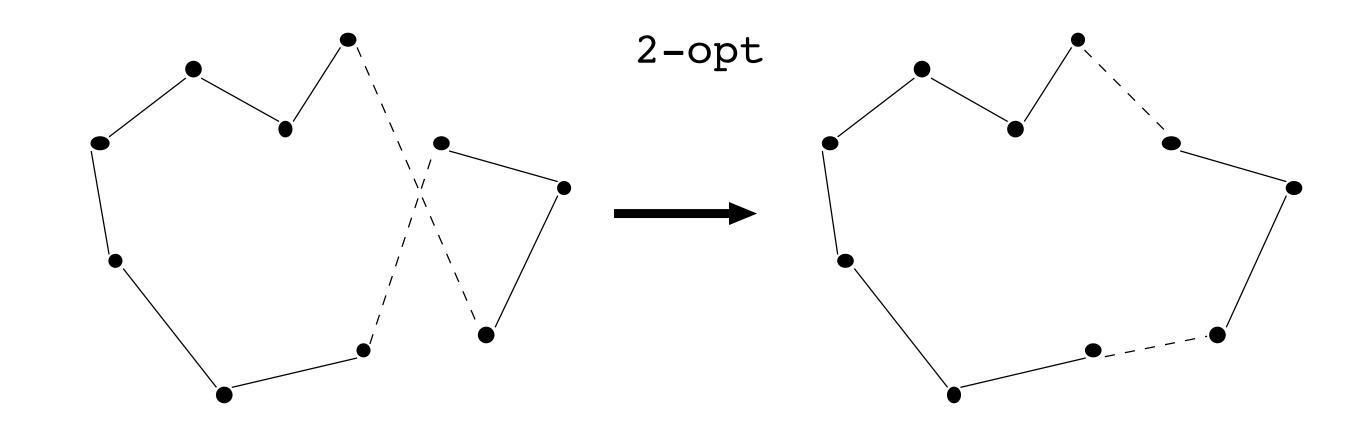


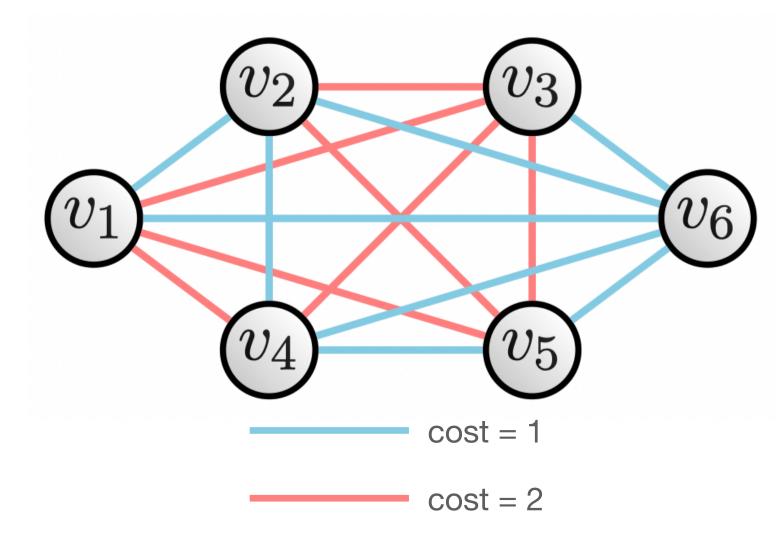
Nearest Neighbour heuristic for the TSP:

- always choose at the current city the closest unvisited city
 - choose an arbitrary initial city $\pi(1)$
 - at the *i*th step choose city $\pi(i+1)$ to be the city *j* that minimises $\{d(\pi(i),j)\}; j \neq \pi(k), 1 \leq k \leq i$

Iterative Improvement for the TSP

- initial solution is a complete tour
- k-opt neighbourhood: solutions which differ by at most k edges



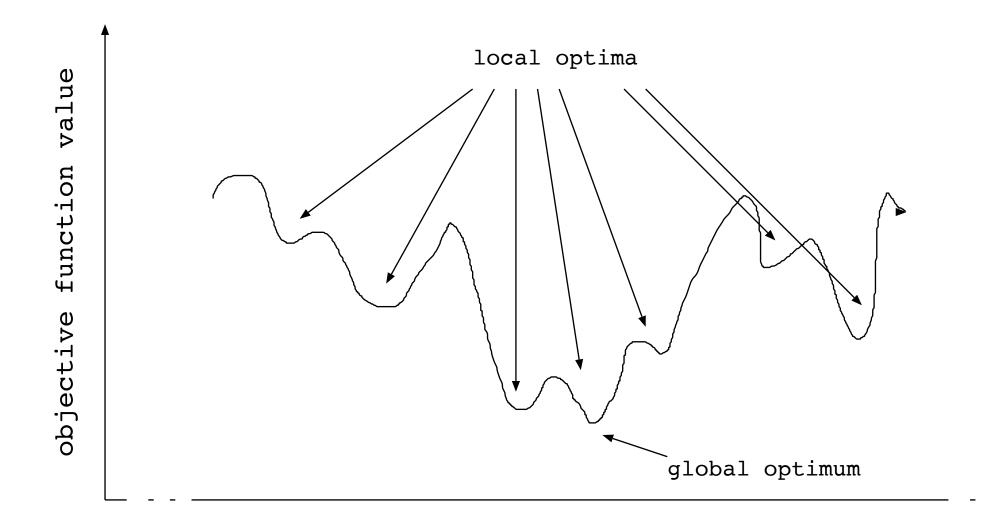


Problems with local search?

• neighbourhood size $\mathcal{O}(n^k)$

Stochastic Local Search:

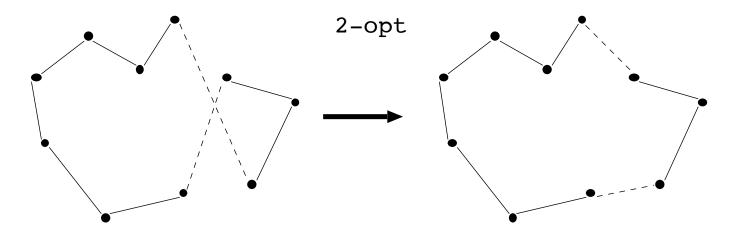
- randomise initialisation step
 - random initial solutions
 - randomised construction heuristics
- randomise search steps
 such that suboptimal/worsening steps are allowed
 → improved performance & robustness
- typically, degree of randomisation controlled by noise parameter
- allows to invest arbitrary computation times



solution space

Iterative Improvement for the TSP

- initial solution is a complete tour
- k-opt neighbourhood: solutions which differ by at most k edges



0-1 Knapsack Problem

There is a budget b available for investment in projects during the coming year and n projects are under consideration, where a_j is the outlay for project j and c_j is its expected return. The goal is to choose a set of projects so that the budget is not exceeded and the expected return is maximized.

Definition of the variables.

 $x_j = 1$ if project j is selected, and $x_j = 0$ otherwise. Definition of the constraints.

The budget cannot be exceeded:

$$\sum_{j=1}^{n} a_j x_j \le b.$$

The variables are 0–1:

$$x_i \in \{0, 1\} \quad \text{for } j = 1, \dots, n.$$

Definition of the objective function.

The expected return is maximized:

$$\max \sum_{j=1}^{n} c_j x_j.$$

Can you find a feasible solution greedily?

Knapsack Greedy algorithm

Definition of the objective function.

The expected return is maximized:

$$\max \sum_{j=1}^{n} c_j x_j.$$

The budget cannot be exceeded:

$$\sum_{j=1}^{n} a_j x_j \le b.$$

The variables are 0–1:

$$x_j \in \{0, 1\} \quad \text{for } j = 1, \dots, n.$$

Sort items in increasing order of $\frac{c_j}{a_j}$

While budget < b and there is an item that fits:

Insert next best item from sorted list into knapsack; update budget

Knapsack Greedy algorithm

$$\max \sum_{j=1}^{n} c_j x_j. \qquad \text{s.t.} \sum_{j=1}^{n} a_j x_j \le b. \qquad x_j \in \{0, 1\} \quad \text{for } j = 1, \dots, n.$$

Sort items in increasing order of
$$\frac{c_j}{a_j}$$

While budget < b and there is an item that fits:

Insert next best item from sorted list into knapsack; update budget

j	Cj	aj	c_j/a_j
1	6	1	6
2	10	2	5
3	12	3	4

Knapsack Greedy algorithm

$$\max \sum_{j=1}^{n} c_j x_j. \qquad \text{s.t.} \sum_{j=1}^{n} a_j x_j \le b. \qquad x_j \in \{0, 1\} \quad \text{for } j = 1, \dots, n.$$

Sort items in increasing order of
$$\frac{c_j}{a_i}$$

While budget < b and there is an item that fits:

Insert next best item from sorted list into knapsack; update budget

j	Cj	a_j	c_j/a_j	$c_j/a_j^{0.5}$
1	6	1	6	6
2	10	2	5	7.07
3	12	3	4	6.9

$$- LP-based \min_{x} c^{T}x \text{ s.t. } Ax \leq b, x \in \{0,1\}^{n}$$

Land & Doig, 1960

- **Select Node**
- 2 Solve LP Relaxation
- 3 Prune?
- 4 Add Cuts
- 5 Run Heuristics
- Branch

$$-LP$$
-based $\min_{x} c^{T}x$ s.t. $Ax \le b, x \in \{0,1\}^{n}$

Land & Doig, 1960

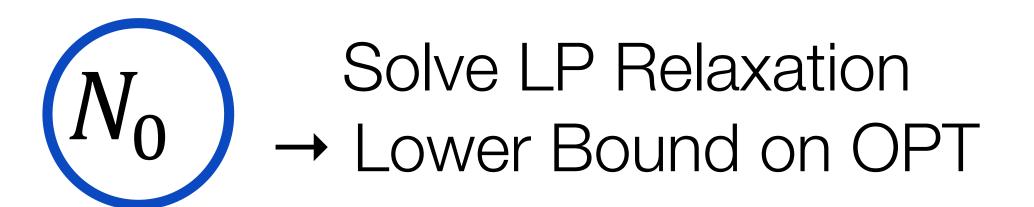
- **Select Node**
- Solve LP Relaxation
- 3 Prune?
- 4 Add Cuts
- Run Heuristics
- Branch

$$-LP$$
-based $\min_{x} c^{T}x$ s.t. $Ax \le b, x \in \{0,1\}^{n}$

Land & Doig, 1960

Repeat:

- **Select Node**
- 2 Solve LP Relaxation
- 3 Prune?
- 4 Add Cuts
- **Run Heuristics**
- Branch



 $[0,1]^n$

$$-LP-based \min_{x} c^{T}x \text{ s.t. } Ax \leq b, x \in \{0,1\}^{n}$$

Land & Doig, 1960

Repeat:

- **Select Node**
- Solve LP Relaxation
- 3 Prune?
- 4 Add Cuts
- Run Heuristics
- Branch



 $[0,1]^n$

$$-LP$$
-based $\min_{x} c^{T}x$ s.t. $Ax \le b, x \in \{0,1\}^{n}$

Land & Doig, 1960

Repeat:

- **Select Node**
- Solve LP Relaxation
- 3 Prune?
- 4 Add Cuts
- **Run Heuristics**
- Branch

Add Cuts:

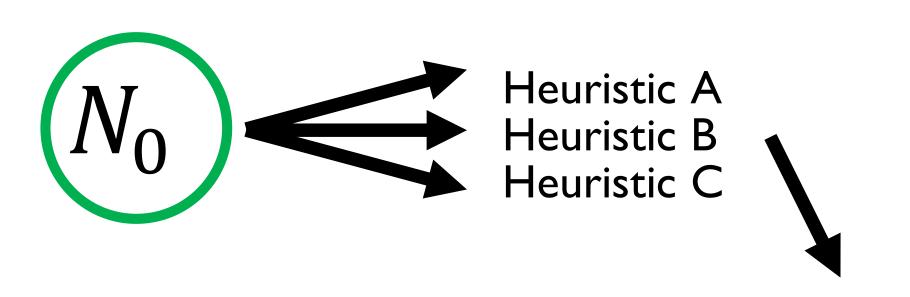
Tightening Constraints

$$-LP-based \min_{x} c^{T}x \text{ s.t. } Ax \leq b, x \in \{0,1\}^{n}$$

Land & Doig, 1960

Repeat:

- **Select Node**
- Solve LP Relaxation
- 3 Prune?
- **Add Cuts**
- 5 Run Heuristics
- Branch



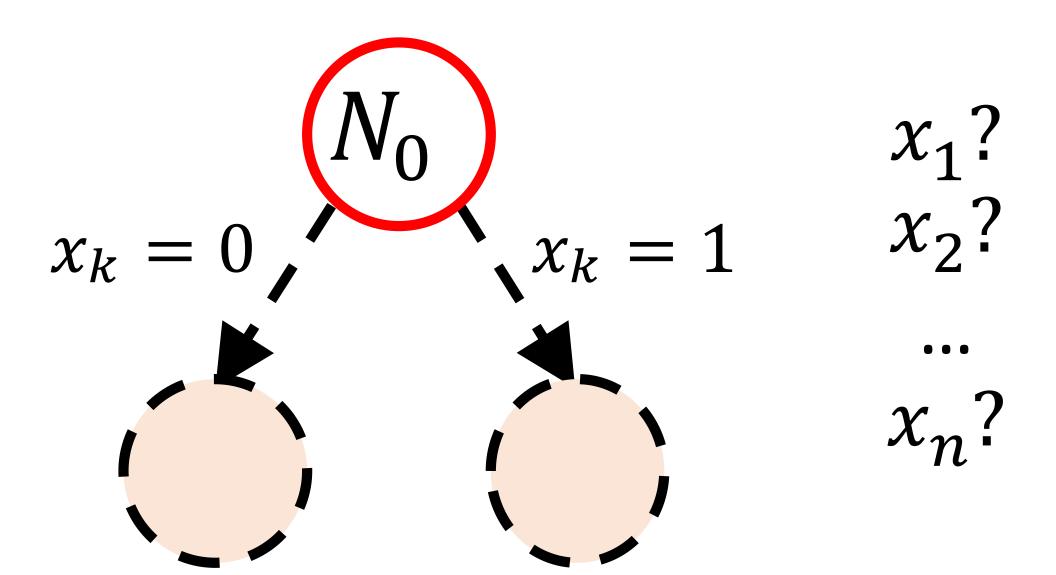
Feasible solution? **Update Best Solution**

-LP-based

$$\min_{x} c^T x \text{ s.t. } Ax \leq b, x \in \{0,1\}^n$$

Land & Doig, 1960

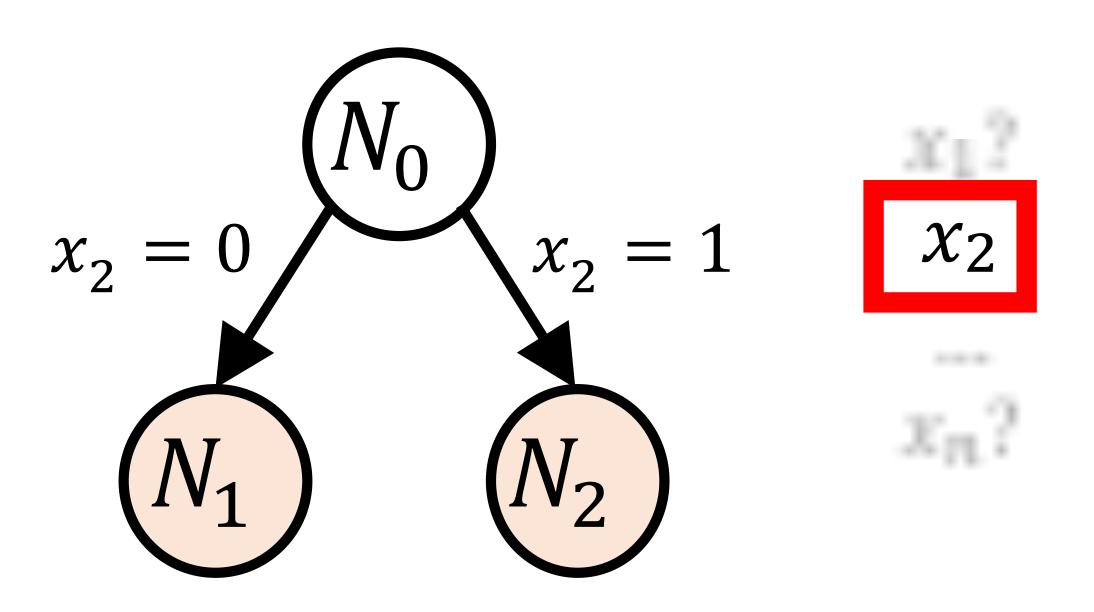
- **Select Node**
- 2 Solve LP Relaxation
- 3 Prune?
- 4 Add Cuts
- 5 Run Heuristics
- 6 Branch



$$- LP-based \min_{x} c^{T}x \text{ s.t. } Ax \leq b, x \in \{0,1\}^{n}$$

Land & Doig, 1960

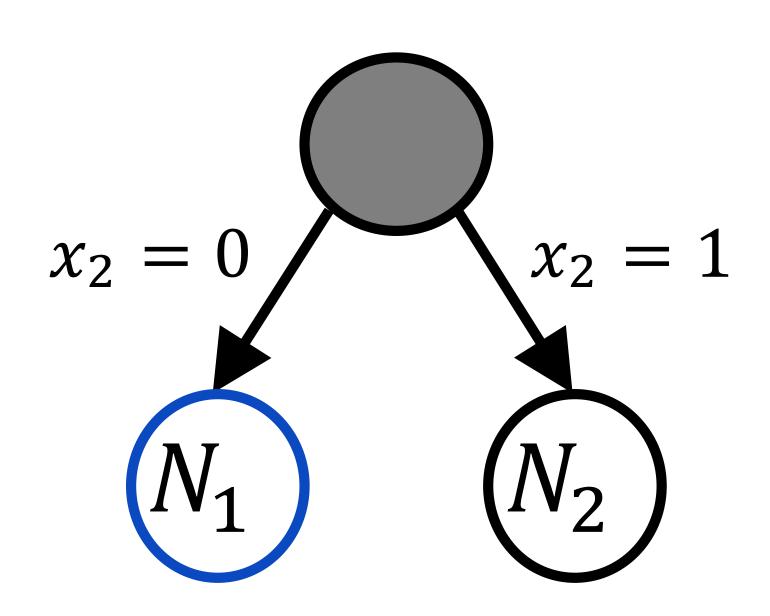
- **Select Node**
- Solve LP Relaxation
- 3 Prune?
- **Add Cuts**
- **Run Heuristics**
- Branch



$$- LP-based \min_{x} c^{T}x \text{ s.t. } Ax \leq b, x \in \{0,1\}^{n}$$

Land & Doig, 1960

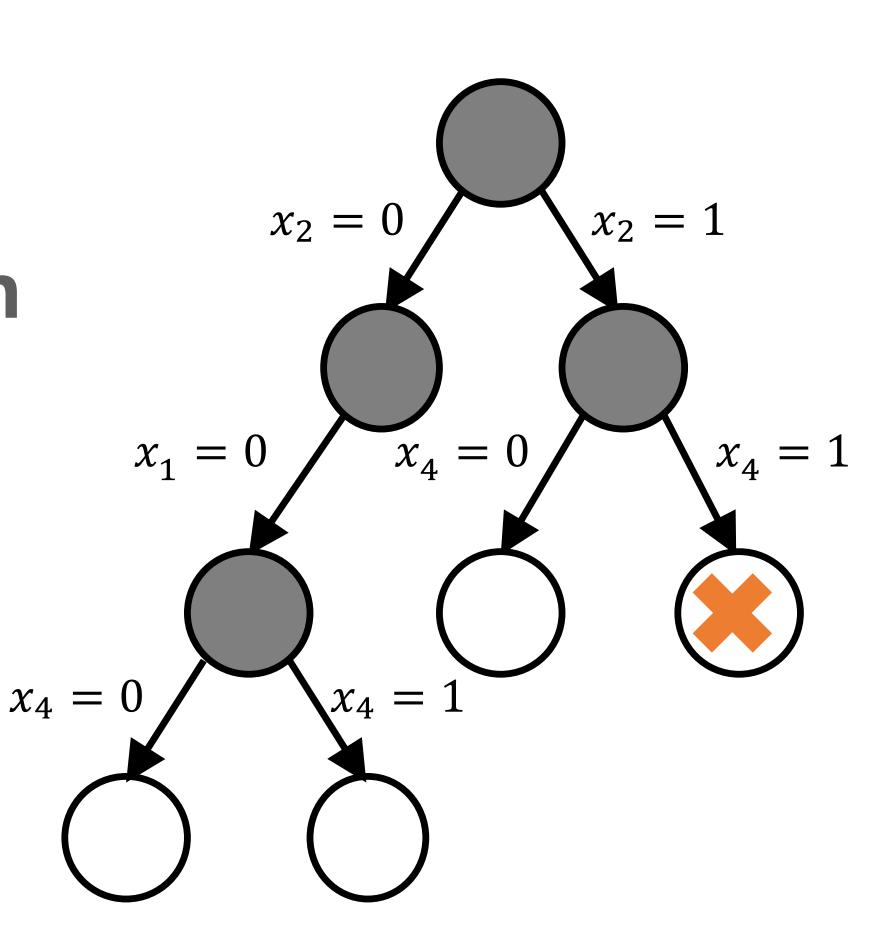
- **Select Node**
- Solve LP Relaxation
- 3 Prune?
- **Add Cuts**
- **Run Heuristics**
- Branch



$$- LP-based \min_{x} c^{T}x \text{ s.t. } Ax \leq b, x \in \{0,1\}^{n}$$

Land & Doig, 1960

- **Select Node**
- Solve LP Relaxation
- Prune?
- **Add Cuts**
- **Run Heuristics**
- Branch



Towards Tailored Algorithms

IBM Knowledge Center

Managing sets of parameters

Parameter names

Correspondence of parameters between APIs

Saving parameter settings to a file in the C API

Topical list of parameters

Barrier

Benders algorithm

Distributed MIP

MIP

MIP general

MIP strategies

MIP cuts

MIP tolerances

MIP limits

Here are links to parameters controlling MIP strategies.

algorithm for initial MIP relaxation

Benders strategy

MIP subproblem algorithm

MIP variable selection strategy

MIP strategy best bound interval

MIP branching direction

backtracking tolerance

MIP dive strategy

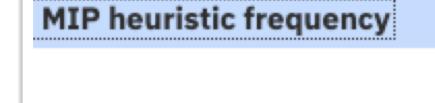
MIP heuristic effort

CPLEX Documentation

Towards Tailored Algorithms

MIP	vari	able	selec	tion	strategy	

Value	Symbol	Meaning
-1	CPX_VARSEL_MININFEAS	Branch on variable with minimum infeasibility
0	CPX_VARSEL_DEFAULT	Automatic: let CPLEX choose variable to branch on; default
1	CPX_VARSEL_MAXINFEAS	Branch on variable with maximum infeasibility
2	CPX_VARSEL_PSEUDO	Branch based on pseudo costs
3	CPX_VARSEL_STRONG	Strong branching
4	CPX_VARSEL_PSEUDOREDUCED	Branch based on pseudo reduced costs



Value	Meaning
-1	None
0	Automatic: let CPLEX choose; default
Any positive integer	Apply the periodic heuristic at this frequency

CPLEX Documentation

- an algorithm A with parameters p_1, \ldots, p_k that affect its behaviour,
- a space C of parameter settings (configurations), where $c \in C$ specifies values for $p_1, ..., p_k$,
- ullet a set of problem instances I,
- a performance metric m that measures the performance of A on instance set I for a given configuration c,

find a configuration $c^* \in C$ such that running algorithm A on instance set I maximizes metric m

Hoos, Holger H. "Automated algorithm configuration and parameter tuning." Autonomous search. Springer, Berlin, Heidelberg, 2011. 37-71.

Greedy 0-1 knapsack

Exponent p_1 such that items are sorted w.r.t. $c_j/a_i^{p_1}$

• an algorithm A with parameters p_1, \ldots, p_k that affect its behaviour,

$$p_1 \in (0,1]$$

- a space C of parameter settings (configurations), where $c \in C$ specifies values for p_1, \ldots, p_k ,
- ullet a set of problem instances I,

$$\sum_{i \in I} \sum_{j=1}^{n} c_j x_j$$

• a performance metric m that measures the performance of A on instance set I for a given configuration c,

find a configuration $c^* \in C$ such that running algorithm A on instance set I maximizes metric m

Issues to consider

- Generalization
- Time-outs!
- Optimization!

Racing Procedures

- ullet Assumptions: small, finite configuration space C
- Basic idea:
 - sample instance,
 - test remaining configs.,
 - eliminate really bad ones relative to current best config.,
 - repeat.


```
procedure F-Race
   input target algorithm A, set of configurations C, set of problem instances I,
          performance metric m;
   parameters integer ni<sub>min</sub>;
   output set of configurations C^*;
   C^* := C; ni := 0;
   repeat
      randomly choose instance i from set I;
      run all configurations of A in C^* on i;
      ni := ni + 1;
      if ni \geq ni_{min} then
          perform rank-based Friedman test on results for configurations in C^* on all instances
             in I evaluated so far;
          if test indicates significant performance differences then
              c^* := best configuration in C^* (according to m over instances evaluated so far);
              for all c \in C^* \setminus \{c^*\} do
                 perform pairwise Friedman post hoc test on c and c^*;
                 if test indicates significant performance differences then
                     eliminate c from C^*;
                 end if;
              end for;
          end if;
      end if;
   until termination condition met;
   return C^*;
end F-Race
                                                                    19
```


123rf.com

Birattari, Mauro, et al. "A Racing Algorithm for Configuring Metaheuristics." GECCO. Vol. 2. No. 2002.

```
procedure F-Race
   input target algorithm A, set of configurations C, set of problem instances I,
          performance metric m;
   parameters integer ni<sub>min</sub>;
   output set of configurations C^*;
   C^* := C; ni := 0;
   repeat
      randomly choose instance i from set I;
      run all configurations of A in C^* on i;
      ni := ni + 1;
      if ni \geq ni_{min} then
          perform rank-based Friedman test on results for configurations in C^* on all instances
              in I evaluated so far;
          if test indicates significant performance differences then
              c^* := best configuration in C^* (according to m over instances evaluated so far);
              for all c \in C^* \setminus \{c^*\} do
                 perform pairwise Friedman post hoc test on c and c^*;
                 if test indicates significant performance differences then
                     eliminate c from C^*;
                 end if;
              end for;
          end if;
      end if;
   until termination condition met;
   return C^*;
end F-Race
                                                                    20
```


123rf.com

Birattari, Mauro, et al. "A Racing Algorithm for Configuring Metaheuristics." GECCO.

Vol. 2. No. 2002.

```
procedure F-Race
   input target algorithm A, set of configurations C, set of problem instances I,
          performance metric m;
   parameters integer ni<sub>min</sub>;
   output set of configurations C^*;
   C^* := C; ni := 0;
   repeat
      randomly choose instance i from set I;
      run all configurations of A in C^* on i;
      ni := ni + 1;
      if ni \geq ni_{min} then
          perform rank-based Friedman test on results for configurations in C^* on all instances
              in I evaluated so far;
          if test indicates significant performance differences then
              c^* := best configuration in C^* (according to m over instances evaluated so far);
             for all c \in C^* \setminus \{c^*\} do
                 perform pairwise Friedman post hoc test on c and c^*;
                 if test indicates significant performance differences then
                     eliminate c from C^*;
                 end if;
              end for;
          end if;
      end if;
   until termination condition met;
   return C^*;
end F-Race
                                                                    21
```

Are these results	
statistically "similar"?)

	Config X	Config Y	Config Z
Instance 1	7	5	8
Instance 2	1	4	2
Instance 3	3	3	3
Instance 4	2	7	8

Sum of ranks

$$T = \frac{(n-1)\sum_{j=1}^{n} \left(R_j - \frac{k(n+1)}{2}\right)^2}{\sum_{l=1}^{k} \sum_{j=1}^{n} R_{lj}^2 - \frac{kn(n+1)^2}{4}}$$

Birattari, Mauro, et al. "A Racing Algorithm for Configuring Metaheuristics." GECCO. Vol. 2. No. 2002.

procedure I/F-Race

input target algorithm A, set of configurations C, set of problem instances I, performance metric m;

output set of configurations C^* ;

initialise probabilistic model M;

 $C' := \emptyset$; // later, C' is the set of survivors from the previous F-Race

repeat

based on model M, sample set of configurations $\widehat{C} \subseteq C$;

perform F-Race on configurations in $\widehat{C} \cup C'$ to obtain set of configurations C^* ; update probabilistic model M based on configurations in C^* ;

 $C' := C^*$;

until termination condition met;

return $c^* \in C^*$ with best performance (according to m) over all instances evaluated; end I/F-Race

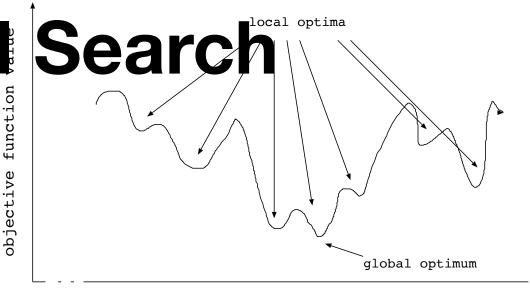
123rf.com

Balaprakash, Prasanna, Mauro Birattari, and Thomas Stützle. "Improvement strategies for the F-Race algorithm: Sampling design and iterative refinement." International workshop on hybrid metaheuristics. Springer, Berlin, Heidelberg, 2007.

Paramils

ILS: Iterated Local Search

```
procedure ParamILS
   input target algorithm A, set of configurations C, set of problem instances I,
         performance metric m;
   parameters configuration c_0 \in C, integer r, integer s, probability pr;
   output configuration c^*;
   c^* := c_0;
   for i := 1 to r do
      draw c from C uniformly at random;
      assess c against c^* based on performance of A on instances from I according to metric m;
      if c found to perform better than c^* then
         c^* := c;
      end if;
   end for;
   c := c^*;
   perform subsidiary local search on c;
   while termination condition not met do
      c' := c;
      perform s random perturbation steps on c'
      perform subsidiary local search on c';
      assess c' against c based on performance of A on instances from I according to metric m;
      if c' found to perform better than c then
                                                   // acceptance criterion
         update overall incumbent c^*;
         c := c';
      end if;
      with probability pr do
         draw c from C uniformly at random;
      end with probability;
   end while;
   return c^*;
                                                                                    23
end ParamILS
```



solution space

Initial sampling phase

Random perturbation + local search Evaluation Update incumbent config.

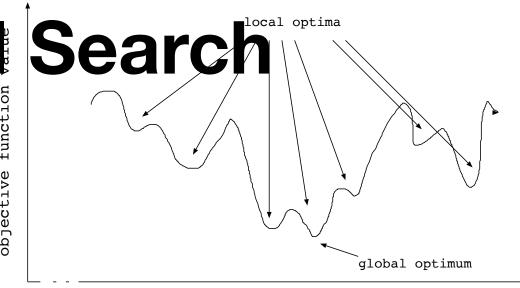
Random restart!

Hutter, Frank, et al. "ParamILS: an automatic algorithm configuration framework." Journal of Artificial Intelligence Research 36 (2009): 267-306.

Paramils

ILS: Iterated Local Search

```
procedure ParamILS
   input target algorithm A, set of configurations C, set of problem instances I,
         performance metric m;
   parameters configuration c_0 \in C, integer r, integer s, probability pr;
   output configuration c^*;
   c^* := c_0;
   for i := 1 to r do
      draw c from C uniformly at random;
      assess c against c^* based on performance of A on instances from I according to metric m;
      if c found to perform better than c^* then
         c^* := c;
      end if;
   end for;
   c := c^*;
   perform subsidiary local search on c;
   while termination condition not met do
      c' := c;
      perform s random perturbation steps on c'
      perform subsidiary local search on c';
      assess c' against c based on performance of A on instances from I according to metric m;
      if c' found to perform better than c then
                                                   // acceptance criterion
         update overall incumbent c^*;
         c := c';
      end if;
      with probability pr do
         draw c from C uniformly at random;
      end with probability;
   end while;
   return c^*;
                                                                                    24
end ParamILS
```



solution space

Initial sampling phase

Random perturbation + local search Evaluation
Update incumbent config.

Random restart!

Hutter, Frank, et al. "ParamILS: an automatic algorithm configuration framework." *Journal of Artificial Intelligence Research* 36 (2009): 267-306.

Sequential Model-Based Optimization

```
procedure SMBO
   input target algorithm A, set of configurations C, set of problem instances I,
          performance metric m;
   output configuration c^*;
   determine initial set of configurations C_0 \subset C;
   for all c \in C_0, measure performance of A on I according to metric m;
   build initial model M based on performance measurements for C_0;
   determine incumbent c^* \in C_0 for which best performance was observed or predicted;
   repeat
      based on model M, determine set of configurations C' \subseteq C;
      for all c \in C', measure performance of A on I according to metric m;
      update model M based on performance measurements for C';
      update incumbent c^*;
   until termination condition met;
   return c^*;
end SMBO
```

Hutter, Frank, Holger H. Hoos, and Kevin Leyton-Brown. "Sequential model-based optimization for general algorithm configuration." *International conference on learning and intelligent optimization*. Springer, Berlin, Heidelberg, 2011.

Sequential Model-Based Optimization

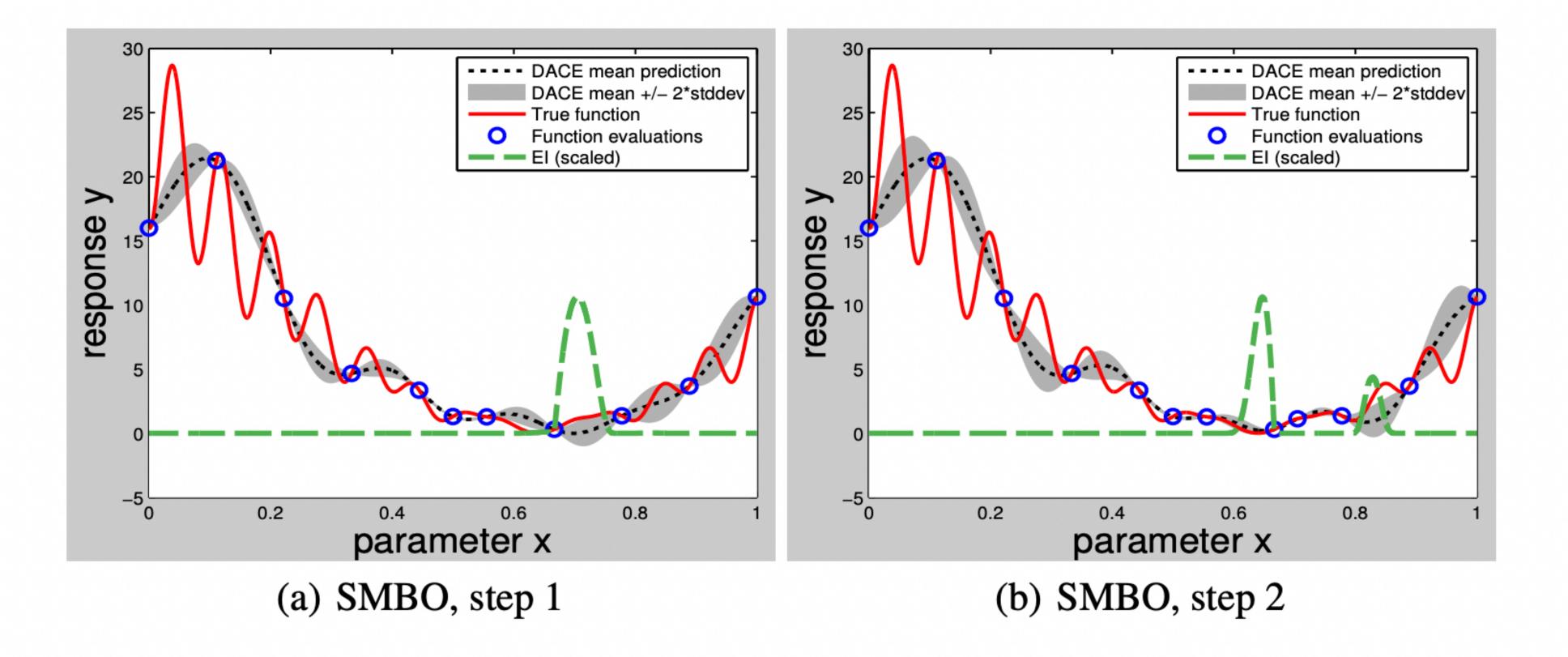


Fig. 1. Two steps of SMBO for the optimization of a 1D function. The true function is shown as a solid line, and the circles denote our observations. The dotted line denotes the mean prediction of a noise-free Gaussian process model (the "DACE" model), with the grey area denoting its uncertainty. Expected improvement (scaled for visualization) is shown as a dashed line.

Sequential Model-Based Optimization

```
procedure SMBO
   input target algorithm A, set of configurations C, set of problem instances I,
         performance metric m;
   output configuration c^*;
   determine initial set of configurations C_0 \subset C;
   for all c \in C_0, measure performance of A on I according to metric m;
   build initial model M based on performance measurements for C_0;
   determine incumbent c^* \in C_0 for which best performance was observed or predicted;
   repeat
      based on model M, determine set of configurations C' \subseteq C;
      for all c \in C', measure performance of A on I according to metric m;
      update model M based on performance measurements for C';
      update incumbent c^*;
   until termination condition met;
   return c^*;
end SMBO
```

$$EI(x) := E[\max\{f_{min} - \hat{F}(x), 0\}]$$

Other flavours of algo. config.

- per-instance algorithm selection methods choose one of several target algorithms to be applied to a given problem instance <u>based on properties</u> of that instance determined just before attempting to solve it
- Reactive search procedures, on-line algorithm control methods and adaptive operator selection techniques <u>switch between different</u> <u>algorithms, heuristic mechanisms and parameter configurations while</u> <u>running</u> on a given problem instance
- dynamic algorithm portfolio approaches repeatedly <u>adjust the allocation</u> of CPU shares between algorithms that are running concurrently on a given problem instance