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Did I forget to hit 
record? Please 

remind me!

Largely based on Hoos, Holger H. "Automated algorithm configuration and parameter tuning." Autonomous 
search. Springer, Berlin, Heidelberg, 2011. 37-71.
Some examples from Chapter 13 of Integer Programming by Wolsey

Algorithm Configuration and friends
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Tom Mitchell, CMU 10-601 slides



Why should this work at all?

With a sufficient amount of 
“similar” data 

+ 
an expressive model class: 

Minimizing the loss function on the 
training data yields a highly 

accurate model on unseen test 
data, with high probability

1. Data: S = {(xi, yi)}i = 1,…,n 
• xi: data example with d attributes 
• yi: label of example (what you care 

about) 

2. Classification model: a function 
f(a,b,c,…) 

• Maps from X to Y 
• (a,b,c,…) are the parameters 

3. Loss function: L(y, f(x)) 
• Penalizes the model’s mistakes

The main theoretical basis of supervised learning:
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Graph Optimization

Travelling Salesperson Problem (TSP)

cost = 1 

cost = 2 optimal solution, cost = 7 
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TSPs in Montréal 
Every few hours, optimally route the salesperson through a set of locations
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cost = 1 

cost = 2 
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Nearest Neighbour heuristic for the TSP:

always choose at the current city the closest unvisited city

– choose an arbitrary initial city

– at the th step choose city to be the city that
minimises

running time

worst case performance

other construction heuristics for TSP are available

Hoos / Stützle Stochastic Search Algorithms 36

Iterative Improvement for the TSP

initial solution is a complete tour

-opt neighbourhood: solutions which differ by at most
edges

2-opt

neighbourhood size

More complex neighbourhoods: variable depth search

Hoos / Stützle Stochastic Search Algorithms 44
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Hoos / Stützle Stochastic Search Algorithms 44

Problems with local search?
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Hoos / Stützle Stochastic Search Algorithms 46Iterative Improvement for the TSP

initial solution is a complete tour

-opt neighbourhood: solutions which differ by at most
edges

2-opt

neighbourhood size

More complex neighbourhoods: variable depth search

Hoos / Stützle Stochastic Search Algorithms 44

Stochastic Local Search:

randomise initialisation step

– random initial solutions

– randomised construction heuristics

randomise search steps
such that suboptimal/worsening steps are allowed
improved performance & robustness

typically, degree of randomisation controlled by noise
parameter

allows to invest arbitrary computation times

Hoos / Stützle Stochastic Search Algorithms 47



0-1 Knapsack Problem
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6 1 Formulations

The 0–1 Knapsack Problem

There is a budget b available for investment in projects during the coming year
and n projects are under consideration, where aj is the outlay for project j and cj is
its expected return. The goal is to choose a set of projects so that the budget is not
exceeded and the expected return is maximized.

De!nition of the variables.
xj = 1 if project j is selected, and xj = 0 otherwise.

De!nition of the constraints.
The budget cannot be exceeded:

n∑
j=1

ajxj ≤ b.

The variables are 0–1:

xj ∈ {0, 1} for j = 1,… ,n.

De!nition of the objective function.
The expected return is maximized:

max
n∑

j=1
cjxj.

The Set Covering Problem

Given a certain number of regions, the problem is to decide where to install a set of
emergency service centers. For each possible center, the cost of installing a service
center and which regions it can service are known. For instance, if the centers are
!re stations, a station can service those regions for which a !re engine is guaran-
teed to arrive on the scene of a !re within eight minutes. The goal is to choose a
minimum cost set of service centers so that each region is covered.

First, we can formulate it as a more abstract COP. Let M = {1,… ,m} be the set
of regions, and N = {1,… ,n} the set of potential centers. Let Sj ⊆ M be the regions
that can be serviced by a center at j ∈ N and cj its installation cost. We obtain the
problem:

min
T⊆N

{∑
j∈T

cj ∶ ∪j∈TSj = M
}

.

Now, we formulate it as a 0–1 IP. To facilitate the description, we !rst construct
a 0–1 incidence matrix A such that aij = 1 if i ∈ Sj and aij = 0, otherwise. Note that
this is nothing but processing of the data.
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Can you find a 
feasible solution 

greedily?
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Sort items in increasing order of 
cj

aj

While budget  and there is an item that fits:< b
Insert next best item from sorted list into knapsack; update budget
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s.t.

b = 5
1 6 1 6

2 10 2 5

3 12 3 4

cj aj cj/ajj
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and n projects are under consideration, where aj is the outlay for project j and cj is
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of regions, and N = {1,… ,n} the set of potential centers. Let Sj ⊆ M be the regions
that can be serviced by a center at j ∈ N and cj its installation cost. We obtain the
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this is nothing but processing of the data.

s.t.

b = 5
1 6 1 6 6

2 10 2 5 7.07

3 12 3 4 6.9

cj aj cj/ajj cj/a0.5
j
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• an algorithm  with parameters  that affect its behaviour,


• a space  of parameter settings (configurations), where  specifies 
values for ,


• a set of problem instances ,


• a performance metric  that measures the performance of  on instance 
set  for a given configuration ,  

A p1, …, pk

C c ∈ C
p1, …, pk

I

m A
I c
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find a configuration  such that running 
algorithm  on instance set  maximizes metric 

c* ∈ C
A I m

Exponent  such that items are sorted w.r.t. p1 cj/a
p1
jGreedy 0-1 knapsack

p1 ∈ (0,1]

∑
i∈I

n

∑
j=1

cjxj



Issues to consider
• Generalization


• Time-outs!


• Optimization!
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Racing Procedures
• Assumptions: small, finite configuration space 


• Basic idea: 


• sample instance, 


• test remaining configs.,


• eliminate really bad ones relative to current best config.,


• repeat.

C
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42 Holger H. Hoos

procedure F-Race
input target algorithm A, set of configurations C, set of problem instances I,

performance metric m;
parameters integer nimin;
output set of configurations C∗;

C∗ := C; ni := 0;
repeat

randomly choose instance i from set I;
run all configurations of A in C∗ on i;
ni := ni+1;
if ni ≥ nimin then

perform rank-based Friedman test on results for configurations in C∗ on all instances
in I evaluated so far;

if test indicates significant performance differences then
c∗ := best configuration in C∗ (according to m over instances evaluated so far);
for all c ∈C∗ \{c∗} do

perform pairwise Friedman post hoc test on c and c∗;
if test indicates significant performance differences then

eliminate c from C∗;
end if;

end for;
end if;

end if;
until termination condition met;
return C∗;

end F-Race

Fig. 3.1: Outline of F-Race for algorithm configuration (original version, according
to 11). In typical applications, nimin is set to values between 2 and 5; further details
are explained in the text. When used on its own, the procedure would typically
be modified to return c∗ ∈ C∗ with the best performance (according to m) over all
instances evaluated within the race

post hoc tests between the incumbent and all other configurations is performed. All
configurations found to have performed significantly worse than the incumbent are
eliminated from the race. An outline of the F-Race procedure for algorithm config-
uration, as introduced by [11], is shown in Figure 3.1; as mentioned by [5], runs on
a fixed number of instances are performed before the Friedman test is first applied.
The procedure is typically terminated either when only one configuration remains,
or when a user-defined time budget has been exhausted.

The Friedman test involves ranking the performance results of each configura-
tion on a given problem instance; in the case of ties, the average of the ranks that
would have been assigned without ties is assigned to each tied value. The test then
determines whether some configurations tend to be ranked better than others when
considering the rankings for all instances considered in the race up to the given iter-
ation. Following Birattari et al. [11], we note that performing the ranking separately
for each problem instance amounts to a blocking strategy on instances. The use of

Birattari, Mauro, et al. "A Racing Algorithm 
for Configuring Metaheuristics." GECCO. 

Vol. 2. No. 2002. 
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44 Holger H. Hoos

procedure I/F-Race
input target algorithm A, set of configurations C, set of problem instances I,

performance metric m;
output set of configurations C∗;

initialise probabilistic model M;
C′ := /0; // later, C′ is the set of survivors from the previous F-Race
repeat

based on model M, sample set of configurations Ĉ ⊆C;
perform F-Race on configurations in Ĉ∪C′ to obtain set of configurations C∗;
update probabilistic model M based on configurations in C∗;
C′ := C∗;

until termination condition met;
return c∗ ∈C∗ with best performance (according to m) over all instances evaluated;

end I/F-Race

Fig. 3.2: High-level outline of Iterated F-Race, as introduced by [5]; details are
explained in the text. The most recent version of I/F-Race slightly deviates from
this outline (see 12)

(we note that this can be seen as a degenerate case of the normal distributions used
subsequently, in which the variance is infinite and truncation is applied).

In each iteration of I/F-Race, a certain number of configurations are sampled
from the distributions N1, . . . ,Ns. In the first iteration, this corresponds to sampling
configurations uniformly at random from the given configuration space. In subse-
quent iterations, for each configuration to be sampled, first, one of the Ni is chosen
using a rank-based probabilistic selection scheme based on the performance of the
configuration ci associated with Ni (for details, see 5), and then a configuration
is sampled from this distribution. Values that are outside the range allowable for a
given parameter are set to the closer of the two boundaries, and settings for param-
eters with integer domains are rounded to the nearest valid value. The number a
of configurations sampled in each iteration depends on the number s of configura-
tions that survived the F-Race in the previous iteration; Balaprakash et al. [5] keep
the overall number of configurations considered in each iteration of I/F-Race con-
stant at some value r, and therefore simply replace those configurations eliminated
by F-Race with newly sampled ones (i.e., a := r − s, where in the first iteration,
s = 0).

The resulting population of a + s configurations is subjected to a standard F-
Race; this race is terminated using a complex, disjunctive termination condition
that involves a (lower) threshold on the number of surviving configurations as well
as upper bounds on the computational budget (measured in target algorithm runs)
and the number of problem instances considered 2. Each of the F-Races conducted
within I/F-Race uses a random permutation of the given instance set in order to

2 The threshold mechanism ends the race as soon as the number of survivors has fallen below k,
the number of target algorithm parameters.



ParamILS ILS: Iterated Local Search

23

solution space

ob
je
ct
iv
e 
fu
nc
ti
on
 v
al
ue

global optimum

local optima
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procedure ParamILS
input target algorithm A, set of configurations C, set of problem instances I,

performance metric m;
parameters configuration c0 ∈C, integer r, integer s, probability pr;
output configuration c∗;

c∗ := c0;
for i := 1 to r do

draw c from C uniformly at random;
assess c against c∗ based on performance of A on instances from I according to metric m;
if c found to perform better than c∗ then

c∗ := c;
end if;

end for;

c := c∗ ;
perform subsidiary local search on c;
while termination condition not met do

c′ := c;
perform s random perturbation steps on c′

perform subsidiary local search on c′;
assess c′ against c based on performance of A on instances from I according to metric m;
if c′ found to perform better than c then // acceptance criterion

update overall incumbent c∗;
c := c′;

end if;
with probability pr do

draw c from C uniformly at random;
end with probability;

end while;
return c∗;

end ParamILS

Fig. 3.3: High-level outline of ParamILS, as introduced by [36]; details are explained
in the text

ter effects are correlated, as well as in conjunction with mechanisms that recog-
nise and exploit such dependencies in parameter response. Furthermore, search
strategies other than iterative first-improvement could be considered in variants of
ParamILS that build and maintain reasonably accurate models of local parameter
responses.

The perturbation procedure used in the ParamILS framework performs a fixed
number, s, of steps chosen uniformly at random in the same one-exchange neigh-
bourhood used during the local search phases. Computational experiments in which
various fixed values of s as well as several multiples of the number of target algo-
rithm parameters were considered suggest that relatively small perturbations (i.e.,
s = 2) are sufficient for obtaining good performance of the overall configuration
procedure [39]. Considering the use of iterative first-improvement during the local
search phases, this is not overly surprising; still, larger perturbations might be effec-

Initial sampling phase

Random perturbation + local search

Update incumbent config.

Random restart!

Evaluation
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procedure SMBO
input target algorithm A, set of configurations C, set of problem instances I,

performance metric m;
output configuration c∗;

determine initial set of configurations C0 ⊂C;
for all c ∈C0, measure performance of A on I according to metric m;
build initial model M based on performance measurements for C0;
determine incumbent c∗ ∈C0 for which best performance was observed or predicted;
repeat

based on model M, determine set of configurations C′ ⊆C;
for all c ∈C′, measure performance of A on I according to metric m;
update model M based on performance measurements for C′;
update incumbent c∗;

until termination condition met;
return c∗;

end SMBO

Fig. 3.4: High-level outline of the general sequential model-based optimisation ap-
proach to automated algorithm configuration; model M is used to predict the perfor-
mance of configurations that have not (yet) been evaluated, and set C′ is typically
chosen to contain configurations expected to perform well based on those predic-
tions. Details of various algorithms following this approach are explained in the text

number seeds), performance measurements for different configurations can be com-
pared more meaningfully; furthermore, they have no means of exploiting knowledge
about the instances in I acquired from earlier target algorithm runs.

Because black-box function optimisation is somewhat more general than algo-
rithm configuration, and methods for solving black-box functions are easily appli-
cable to modelling and optimising the response of a wide range of systems, in the
following we use standard terminology from the statistics literature on experimen-
tal design, in particular, design point for elements of the given input space X and
response for values of the unknown function f . In the context of algorithm config-
uration, design points correspond to configurations of a given target algorithm A,
and response values represent A’s performance m on instance set I. A unified, more
technical presentation of the methods covered in this section can be found in the
dissertation of Hutter [32], and further details are provided in the original articles
referenced throughout.

3.4.1 The EGO Algorithm

The efficient global optimisation (EGO) algorithm for black-box function optimi-
sation by Jones et al. [44] uses a response surface model obtained via noise-free
Gaussian process regression in combination with an expected improvement crite-
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The efficient global optimisation (EGO) algorithm for black-box function optimi-
sation by Jones et al. [44] uses a response surface model obtained via noise-free
Gaussian process regression in combination with an expected improvement crite-
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rion for selecting the next configuration to be evaluated. The noise-free Gaussian
process (GP) model utilised by EGO is also known as the DACE model, after its
prominent use in earlier work by Sacks et al. [59]. It defines for every input x a
random variable F̂(x) that characterises the uncertainty over the true response value
f (x) at point x.

The model-based optimisation process carried out by EGO starts with about 10 ·k
design points determined using a k-dimensional space-filling Latin hypercube de-
sign (LHD). After measuring the response values for these values, the 2 · k + 2 pa-
rameters of a DACE model are fit to the pairs of design points and response values,
using maximum likelihood estimates (as described by 44, this can be partially done
in closed form). The resulting model is assessed by means of so-called standard-
ized cross-validated residuals, which reflect the degree to which predictions made
by the model agree with the observed response values on the design points used for
constructing the model. If the model is deemed unsatisfactory, the response values
may be transformed using a log- or inverse-transform (i.e., modified by applying the
function lny or 1/y) and the model fitted again.

After a satisfactory initial model has been obtained, it is used in conjunction
with an expected improvement criterion to determine a new design point to be
evaluated. The expected improvement measure used in this context uses the cur-
rent DACE model M to estimate the expected improvement over the best response
value measured so far, fmin, at any given design point x, and is formally defined as
EI(x) := E[max{ fmin − F̂(x),0}], where F̂(x) is the random variable describing the
response for a design point x according to model M. Using a closed-form expres-
sion for this measure given by Jones et al. [44] and a branch & bound search method
(which can be enhanced heuristically), the EGO algorithm then determines a design
point x′ with maximal expected improvement EI(x′). If EI(x′) is less than 1% of the
current incumbent, the procedure terminates. Otherwise, the response value f (x′) is
measured, and the DACE model is refitted on the previous set of data extended by
the pair (x′, f (x′)), and a new iteration begins, in which the updated model is used
to determine the next design point using the same process that yielded x′.

Note that in every iteration of this process, the DACE model has to be fitted,
which involves a matrix inversion of cost O(n3), where n is the number of design
points used. Depending on the cost of measuring the response value for a given
design point, this may represent a substantial computational overhead. Furthermore,
the noise-free Gaussian process model used in EGO cannot directly characterise
the stochastic responses obtained when solving algorithm configuration problems
involving randomised target algorithms.

3.4.2 Sequential Kriging Optimisation and Sequential Parameter
Optimisation

We now discuss two black-box optimisation procedures that deal with stochastic
responses, as encountered when modelling phenomena subject to observation noise
or configuring randomised algorithms.



Other flavours of algo. config.
• per-instance algorithm selection methods choose one of several target 

algorithms to be applied to a given problem instance based on properties 
of that instance determined just before attempting to solve it


• Reactive search procedures, on-line algorithm control methods and 
adaptive operator selection techniques switch between different 
algorithms, heuristic mechanisms and parameter configurations while 
running on a given problem instance 


• dynamic algorithm portfolio approaches repeatedly adjust the allocation 
of CPU shares between algorithms that are running concurrently on a 
given problem instance
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